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Abstract
In this paper the structure of the interface between polymer films is discussed
to elucidate fluctuations and confinement effects in fluid polymer mixtures. The
neutron reflectivity technique has been employed to investigate the dependence
of the structure of the interface on the degree of immiscibility of the polymers
over a wide range, as criticality is approached, and to characterize it in terms of
intrinsic width, as calculated by mean field theories, and capillary fluctuations.
For more immiscible systems, as the degree of incompatibility between the
polymers is decreased, the width of the interface increases slowly, and it is
independent of the molecular weight of the polymers. Closer to the critical
point the dependence on the degree of miscibility becomes stronger and the
way in which the interfacial width diverges, as criticality is approached, is
related to both chain length and Flory–Huggins interaction parameter (χ). The
results have been compared to the predictions of mean field theories. Self-
consistent field numerical calculations, with the additional contribution due to
capillary waves, provide a good description of the width of the interface between
two polymer bulk phases, in particular at higher and intermediate degrees of
immiscibility—the product of the Flory–Huggins interaction parameter χ and
the number N of monomers of the chain, χ N . For more miscible systems a
crossover is observed to a region where the square gradient theory in the weak
segregation limit better approximates the experimental results.

Moreover, the mechanisms by which confinement affects the interface have
been investigated. To understand the relative importance of the long ranged van
der Waals forces and short ranged ‘truncation forces’ in modifying thermally
excited fluctuations at the polymer/polymer interface, the thickness dependence
of the interfacial width has been studied for different degrees of miscibility,
approaching criticality. The results show a gradual transition from a region
where long ranged dispersion forces are dominant in influencing the capillary
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wave spectrum, for higher degrees of immiscibility, to a region where short
ranged forces—connected to the presence of the walls—become more important
and the dependence of the interfacial width on film thickness is stronger. The
thickness dependence of the interfacial width was also studied for systems with
different molecular weights in different conditions of miscibility, to investigate
the effects of a confined geometry on polymers with different chain lengths as
criticality is approached.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The problem of the structure of the interface between two coexisting fluid phases has a
long history, dating back to van der Waals [1], but there has been a recent burgeoning
of theoretical work in this area, particularly in relation to the effects of confinement and
reduced dimensionality on fluid phase behaviour. Phenomena related to wetting and capillary
condensation, for example, have fundamental interest in the area of phase transitions in
situations of reduced dimensionality, with strong analogies to magnetic transitions in thin films.
This issue touches on many technologically important problems, for example the behaviour of
fluid mixtures in porous media, and the formation of self-stratified industrial coatings. The
experimental effort has been a lot smaller than the theoretical one, largely because the study
of the structure of interfaces between two coexisting fluids and the control of the strength of
surface fields in confining geometries present difficult experimental problems. However, one
subset of fluid mixtures has proved very fruitful for experiments—coexisting polymeric liquids,
where the technique of neutron reflectivity has proved invaluable for probing the structure of
interfaces with sub-nanometre resolution [2].
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The problem of the structure of the interface between two immiscible polymers, both in
bulk and in thin films, is, of course, of considerable technological relevance in its own right;
this interface controls the level of adhesion in multicomponent blends and thus their bulk
mechanical properties. The level of adhesion between a thin polymer layer and a polymer
substrate is important in coating technology, while in new polymer semiconducting devices for
optoelectronics applications interfaces between different polymers control device performance.
A number of recent studies on polymer thin films have identified novel phenomena or effects
that in principle have a more general applicability to other types of fluid mixtures. Examples
include the discovery of surface directed spinodal decomposition [3], studies of the kinetics
of growth of wetting layers [4], and the study of finite size effects on interfacial width in thin
films, which has helped to understand the contribution made by capillary wave fluctuations in
broadening the intrinsic interfacial width between immiscible polymers [5].

In addition to the specific technological interest of polymer thin films there are compelling
reasons to consider them among the most ideal and convenient exemplars for general
fundamental studies of phase behaviour in confined films [6]. These advantages include their
relatively long natural length scales, set by the radius of gyration of the chain. These make
experiments more convenient and simplify theoretical interpretation; the clear separation of
length scales between the molecular and the atomic makes continuum theories particularly
powerful. Polymers are characterized by slow timescales, and in many cases it is easy
and convenient to quench samples into a glassy state; together, these factors allow one
to probe the dynamics of the approach to equilibrium and permit the study of metastable
states. Polymers have an extra control parameter compared to small molecule liquids—the
degree of polymerization. This is of fundamental importance, as it determines the relative
importance of concentration fluctuations. For high molecular weight polymers mean field
theory works well, while bulk fluctuation effects become more important at lower degrees
of polymerization. In some cases—isotopic blends—there is a very well defined interaction
between the components, arising from pure dispersion forces and strict structural symmetry
between components. Finally, polymers have a number of practical advantages—spin coating
allows one reproducibly to prepare highly uniform, smooth films with thicknesses down to
a few nanometres, while well known film handling techniques allow one to prepare non-
equilibrium starting structures such as bilayers with interfaces sharp at the sub-nanometre level.
Polymers are also very well suited, because of the possibility of deuterium labelling, to the
use of specular and off-specular neutron reflectivity, which are the ideal techniques to study
interfaces in polymer thin films and to characterize in plane structures [7]. This powerful tool
can also be backed up by laboratory based techniques such as atomic force microscopy, and
x-ray reflectivity.

In order to realize the full advantages of polymer systems as model systems for studying
fluid interfaces and critical phenomena in confined geometries, it is necessary to be able to
use ideal model systems. Advances in control of microstructure during anionic polymerization
combined with a recent comprehensive body of work on the bulk thermodynamics of polyolefin
mixtures [8] allowed us to study confined thin polymer films with a unique class of polymers,
well defined systems, whose interaction parameters can be tuned at will. This gives us an
unparalleled degree of control over the polymers’ miscibility in our experiments. Although
this class of materials is important due to their attractiveness from the physicist’s point
of view of being able to control the interactions between the components, they also have
considerable technological relevance. New advances in metallocene catalysis have led to the
bulk commercial availability of a wide variety of polyolefins of controlled chain architecture,
and hydrogenated polybutadienes turn out to be very good models for some of these important
new materials [9].
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The aim of this paper is to present our understanding of the structure of thin films of
mixtures of very well controlled polymers, characterizing the nature of the interface between
the coexisting phases, using neutron reflectivity. The issues include the following.

(1) How does the width of the interface depend on the distance away from the critical point?
The interface between two immiscible polymers is not atomically sharp but is characterized
by a well defined width, determined by a balance of chain entropy and energetic interaction
between the polymer chains. For systems with a high degree of immiscibility (the product
of the degree of polymerization and the interaction parameter) the interfacial region is
narrow, while closer to the critical point the interface becomes indefinitely wide. For
strongly immiscible systems the self-consistent field (SCF) theory, in the limit of strong
segregation, could be used to predict analytically the interfacial width. As the degree
of incompatibility is decreased the SCF theory becomes inaccurate and square gradient
theories could be used to determine the interfacial structure (the weak segregation limit),
but the way the two approaches cross over is not well characterized.
Criticality can be achieved at low molecular weight with larger segment–segment
interaction parameter or at high molecular weight with a smaller segment–segment
interaction parameter. At high molecular weights mean field theories could be used to
describe the thermodynamics of the interface: the divergence of the interfacial width
approaching criticality will be characterized in this case by mean field exponents. In
more strongly interacting systems, whose critical point occurs for lower degrees of
polymerization, we should cross over to non-classical exponents and the mean field
approach should be reconsidered.
The existing data are limited to demonstrating the divergence near the critical point
qualitatively [10]. Quantitative tests of the character of the divergence, and on the
crossover from weak to strong segregation limits, are presented.

(2) How is the nature of the interface modified by interfacial fluctuations, and how is this
modified by confinement effects in thin films?
It is now clear that the equilibrium interface width in polymer systems is substantially
broader than the mean field prediction, and that the origin of this broadening is thermally
excited capillary waves. It is also clear that in confined systems the spectrum of capillary
waves is modified, and that this has a substantial effect on their contribution to interfacial
width in thin films. However, there is controversy in the literature about the relative
importance of long range van der Waals forces [5] and short range ‘truncation forces’ [11]
in influencing the capillary wave spectrum. Recent simulations make it clear that in
principle both should be taken into account [12]; in order to untangle this issue systematic
experiments are presented to investigate the confinement effect on interfacial width on a
series of samples in which the degree of incompatibility is kept constant while the degree
of polymerization is changed; it is the latter parameter which determines how strong the
short range interaction is.

2. Interface width in immiscible and quasi-miscible polymers

In the last years there has been a large burgeoning of theoretical studies in the area of
polymer/polymer interfaces [2, 6, 13–21], due to the critical role that the properties of these
interfaces play in technology. Two different theoretical approaches have been developed to
describe the structure of the interface between two incompatible polymers. The self-consistent
field method provides analytical expressions for the width of the interface and the interfacial
tension for strongly immiscible polymers, in the limit of chains with infinite lengths (strong
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segregation limit) [2, 14, 18]. On the other hand, in the vicinity of the critical point, where the
volume fraction of the polymers at the interface varies slowly, the square gradient theory can be
used to predict analytically the interfacial profile (weak segregation limit) [13, 15]. However
the way these two approaches cross over, as criticality is approached, is not known. Recently
computer simulations have also become a major tool to study polymer/polymer interfaces,
complementing analytical theories [19]. Numerical methods and Monte Carlo simulations have
been developed to solve exactly systems of SCF differential equations [6, 13, 22–25], and to
calculate a composition profile across the interface. However, due to the limited power of
workstations, computer simulations restrict their attention to polymers with very short chains,
thus questions regarding the effect of parameters such as the degree of polymerization cannot
be directly addressed [19].

To compare theory and simulations with experimental results on polymer interfaces, the
contribution of capillary waves needs to be considered [1, 26]. These fluctuations of the local
position of the interface broaden the apparent interfacial width. The measured interface will
then depend on the lateral resolution, and can be modified by external forces that affect the
capillary waves, such as gravity or van der Waals interactions [1].

Interfaces between different polymer systems have been investigated experimentally,
including amorphous homopolymers [27, 28, 5, 29], copolymers [10, 11, 30], crystalline
and semi-crystalline polymers [31, 32]. The experimental results have been reviewed by
Stamm and Schubert [33] and by Jones [34]. One of the most extensively studied blends
is the strongly immiscible polymer pair deuterated-polystyrene/poly(methyl-methacrylate)
(dPS/PMMA). Neutron reflectivity experiments by different groups have found that the width
of the interface between the two bulk phases is 50 Å [5, 27, 28]. This result was independent
of the molecular weight of the polymers and of the temperature at which the samples were
annealed to allow the interface to reach equilibrium. More recent experiments on the same
system enabled the understanding of the substantial effect of capillary waves in determining
the overall structure of an interface [5].

More miscible systems have been investigated with nuclear reaction analysis (NRA).
Experiments on the pair polystyrene/deuterated-polystyrene (hPS/dPS), for example, have
shown that the width of the interface, at temperatures below the critical temperature for phase
separation, grows with time up to a limiting value [10]. The measured interfacial width is
in qualitative agreement with the prediction of the square gradient theory for quasi-miscible
systems.

Despite the number of experiments on polymer/polymer interfaces, a complete study of
the dependence of the interfacial profile on the entire range of conditions of miscibility is
missing. One of the questions still open in this field concerns the relative importance of intrinsic
interfacial width, as calculated by mean field theories, and capillary waves, in determining the
overall structure of an interface as criticality is approached. The aim of the experimental work
described in section 10 was to address this issue, performing a systematic study of the interface
between polymer phases as a function of the degree of immiscibility χ N . Quantitative tests
of the theory will be reported, to determine the accuracy of the self-consistent field theory and
to characterize the crossover from the strong to the weak segregation limit, where the square
gradient theory is valid.

3. The self-consistent field theory

The problem of the conformation of a polymer chain that is interacting with many other chains
presents a remarkable analogy with the classical problem of the electronic structure of atoms
with many electrons, which can be solved by using the Hartree method. This idea, originally
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pointed out by Edwards, is at the base of the self-consistent field (SCF) theory proposed in
1971 by Helfand and Tagami, in order to determine the width of the interface and the interfacial
tension between two immiscible polymer phases [14]. This approach considers a polymer chain
at the interface as a random walk in a chemically inhomogeneous environment. The walk is
affected by a mean field potential, resulting from the interaction with all the other polymer
chains. The first step in the SCF method is the definition of a distribution function q(r, r ′, t),
that represents the probability that a chain with t segments starts at a position r and finishes at
r ′. Each polymer chain can then be described by the following equation [2]:

∂q(r, r ′, t)

∂ t
= a2

6
∇2q(r, r ′, t) − U(r)

kT
q(r, r ′, t) (1)

where a is the characteristic segment length of the polymer, k the Boltzmann constant and T
the temperature. U(r) is a spatially varying potential defined as [2]

U(r) = χ(1 − ϕ(r)) + w(r). (2)

In equation (2) the first term describes the energetic interaction between different monomers,
while the second part, expressed as the function w(r), arises from the assumption of
incompressibility of the system. In the case of a planar interface, where only the z component is
important, the equations for the distribution functions in the case of two immiscible polymers,
A and B, are given by

∂qA(z, t)

∂ t
= a2

6
∇2qA(z, t) − UA(z)

kT
qA(z, t) (3)

and

∂qB(z, t)

∂ t
= a2

6
∇2qB(z, t) − UB(z)

kT
qB(z, t). (4)

The volume fractions ϕA(z) and ϕB(z) are then related to the distribution functions by the
following equations:

ϕA(z) = 1

N

∫ N

0
dt qA(z, N − t)qA(z, t) (5)

and

ϕB(z) = 1

N

∫ N

0
dt qB(z, N − t)qB(z, t) (6)

where N represents the total number of segments in the polymer chain.
Since each polymer molecule at the interface obeys equations (3) and (4), the result is a

system of coupled differential equations, the solution of which requires the use of numerical
methods [25]. However, for two strongly immiscible polymers, in the limit of infinite molecular
mass (N → ∞) (strong segregation limit), there is an analytical solution. In this case all the
segments along the polymer chain are equivalent and equations (5) and (6) can be replaced by
the simple expressions

ϕA(z) = q2
A(z) (7)

and

ϕB(z) = q2
B(z). (8)

For the specific boundary conditions ϕA(z → −∞) = 0 and ϕA(z → ∞) = 1,
the volume fraction of the polymer A across the interface, ϕA(z), is then given by the
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following function (more precise details on the derivation of equation (9) can be found in the
literature) [2, 6, 13, 21]:

ϕA(z) = 1

2

[
1 + tanh

(
z

wI

)]
(9)

where z represents the distance from the mean point of the interface, and wI, known as the
intrinsic interfacial width, is defined as

wI = a√
6χ

. (10)

In equation (10), a is the characteristic segment length of the polymers.
The interfacial tension γ between the two phases is given by the expression

γ = kBTρa

√
χ

6
(11)

where ρ is the density of the polymers, a is the characteristic segment length, kB is the
Boltzmann constant and T is the temperature.

Measured values of the polymer–polymer interfacial width, obtained with the neutron
reflection technique for various types of polymer interfaces, ranging from block copolymers
to polymer brushes in polymer matrices, are typically higher than the values extracted from
the self-consistent field theory [33, 34]. A possible explanation for this discrepancy has been
suggested: the experimental result agrees with the theoretical prediction if a correction to the
interfacial width due to capillary wave fluctuations is considered [5].

3.1. Effects of chain length

In equation (10), wI represents the intrinsic interfacial width in the strong segregation limit for
the approximation of infinite chain lengths.

In general, to consider finite molecular mass, Tang and Freed suggested the following
formulae for wI and the interfacial tension, γ , that have been shown to be in good agreement
with the numerical calculations of the SCF theory [18]:

wI = a√
6χ

[
3

4

(
1 − 2

χ N

)
+ 1

4

(
1 − 2

χ N

)2]−1/2

(12)

γ = kBTρa

√
χ

6

(
1 − 1.8

χ N
− 0.4

(χ N )2

)3/2

(13)

where ρ is the density of the polymer, kB the Boltzmann constant and T the temperature.
As can be observed in equations (12) and (13), the corrections to the values obtained in

the strong segregation limit depend only on the inverse degree of immiscibility, (χ N)−1, and
become important only for polymer pairs close to criticality. Thus the interfacial width varies
mainly with χ−1/2 while the interfacial tension γ depends on the square root of the interaction
parameter.

It should be pointed out that these results are obtained under the assumption that the density
and the statistical segment lengths of the two polymers are identical. If this approximation is
removed, more complicated expression can be derived for wI and γ [35].

4. The weak segregation limit

The SCF theory provides analytical expressions for the width of the interface and the interfacial
tension between strongly immiscible polymer pairs. However, for more miscible systems the
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approximation of strong segregation of the two polymer phases is not valid anymore. In this
case, the theory proposed by Cahn and Hilliard can be used to predict the interfacial width [15].
This approach is based on the assumption that the number of configurations available for a
polymer chain at the interface is reduced by the presence of a gradient in the composition.
The free energy is then given by the sum of two terms [13]: the Flory–Huggins free energy
FFH(ϕ) for a homogeneous mixture of the two polymers and a second term proportional to the
square of the composition gradient (∇ϕ)2. The final form for the free energy per segment for
an inhomogeneous system, known as the square gradient expression, is

FSQ = kBT
∫

[FFH(ϕ) + κ(ϕ)(∇ϕ)2] dr. (14)

The gradient coefficient κ(φ) is given by

κ(ϕ) = χr 2
0

6
+ a2

36ϕ(1 − ϕ)
(15)

where the first term represents the intermolecular interactions in a range defined by the distance
r0 of the order of a few nanometres [16], while the second term describes the entropic effects
due to the restriction of possible configurations for the chain (a is the statistical segment length
and ϕA,B are the volume fractions of polymer A and B respectively). This phenomenological
approach is valid in the limit of relatively small concentration gradients, a condition verified
only for weakly immiscible polymer pairs. Numerical methods can be used in order to find
a concentration profile that minimizes the free energy. However, close to the critical point,
where the concentration varies slowly on the scale of the radius of gyration (weak segregation
limit) [2], there is an analytical solution given by

ϕ(z) = 1

2

[
ϕ1 + ϕ2 + (ϕ2 − ϕ1) tanh

(
z

wcrit

)]
(16)

where ϕ1 and ϕ2 are two coexisting compositions that define the boundary conditions in the
system, and z represents the spatial dimension perpendicular to the interface. The critical
interfacial width, wcrit, and the interface tension, γcrit, are given in this case by

wcrit = a
√

N

3

(
χ

χcrit
− 1

)−1/2

(17)

and

γcrit = 9kBT

a2
√

N

(
1 − χcrit

χ

)3/2

(18)

where χcrit represents the value of F–H interaction parameter at the critical point.
Equations (17) and (18) show that at the critical point the width of the interface diverges while
the interfacial tension goes to zero. Although this theory gives an estimation of w and γ for
weakly immiscible polymers, it is not particularly accurate very close to the critical point,
where fluctuations in the composition become more important and the mean field approach
should be reconsidered [1]. As observed by De Gennes, polymer blends can exhibit Ising-like
critical properties. However the long ranged nature of polymer–polymer interactions reduces
the Ising regime to a very narrow range [36–38]. According to the Ginzburg criterion the limit
of the mean field approximation [2], or in other words how close to the critical point one needs
to be for these fluctuations to become relevant, is defined by the condition∣∣∣∣ χ

χcrit
− 1

∣∣∣∣ � 1

N
. (19)

From equation (19) it follows that in the case of high molecular weight polystyrene and
deuterated polystyrene, for example, concentration fluctuations must be taken into account only
when the distance from the critical point is lower than 0.05 ◦C.
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5. Interfacial fluctuations

Mean field theories should describe well the interfacial width between immiscible polymer
blends. However, different experiments on immiscible polymer pairs have found discrepancies
between the experimental results and the theoretical predictions of the SCF theory: the
measured interfacial width was broader than the one estimated theoretically [27–29]. This
difference has been attributed to the presence of capillary waves at the interface [26, 39].
These are thermally excited fluctuations of the local position of the interface, present at all
fluid interfaces [40, 41]. The interface between two immiscible polymers can then be imagined
as a bare interface with width 2wI, roughened by the presence of capillary waves.

In general, the dividing surface between the two fluid phases, ς(x, y), can be represented
as the sum of surface waves [1]:

ς(x, y) =
∑

k

A(q)ei�q·�s (20)

where �s represents a vector in the (x, y) plane, while �q and A(q) are, respectively, the
wavevector and the amplitude of each capillary wave. Each wave creates a surface area with
free energy 1

4 A(q)2q2Sγ, S being the total area of the flat interface and γ the interfacial tension.
Making use of the theorem of equipartition of the energy, at equilibrium the average value of the
energy associated with the additional surface is 1

2 kBT . The mean square value of the amplitude
of capillary waves is then given by [2]

〈A(q)2〉 = 8kBT

Sq2γ
. (21)

The contribution of capillary waves to the interface can be calculated by integrating the mean
square capillary wave dispersion σ 2

ς due to all the possible waves:

σ 2
ς = 〈ς2 − 〈ς〉2〉 =

∫
kBT

2πγ

dq

q
. (22)

In principle all the values are possible for the wavevector q , thus the integral of equation (22)
diverges and the position of the interface is not defined thermodynamically. There must
therefore be physical limits to the wavelengths, and the mean squared dispersion of capillary
waves obtained by integrating equation (22) can be written as

σ 2
ς = kBT

2γπ
ln

qmax

qmin
(23)

where qmin and qmax represent the lower and upper cut-off for capillary wavevectors. The
maximum value of q is related to a minimum length defined for the system, such as the intrinsic
width wI of the interface. A detailed analysis by Semenov shows that the effective qmax is
indeed given by 1/(πwI) [39].

The definition of qmin is instead more complex. The lowest possible wavevector can be
related for example to the lateral size of the system: the wavelengths cannot in fact exceed the
size of the sample. However, other factors may determine a different cut-off, for example the
lateral resolution of the technique used to measure the interface or an external force.

In general an external potential v(z) will introduce a cut-off qext given by

qext =
(

1

γ

(
∂v(z)

∂z

))1/2

. (24)

For instance, gravity introduces a lower cut-off on the spectrum characterized by a gravitational
capillary length agrav given by [1]:

agrav =
√

2γ

g�ρ
(25)
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where �ρ is the difference in the mass density between the two phases. For polymer/polymer
interfaces this length is of the order of millimetres [5], thus in these systems wavelengths longer
than a few millimetres will not be considered.

Hence the total interfacial width measured experimentally, 2w, can be considered as
composed by two terms related to the intrinsic width wI and to the capillary wave component
σς , added in quadrature:

2w = (4w2
I + 2πσ 2

ς )1/2. (26)

It should be pointed out that the experimental width not only depends on the conditions of
miscibility, but also on the dimension of the sample investigated, on the coherence length of the
experimental technique and on external forces, that may modify the contribution of interfacial
fluctuations to the interface.

6. Confinement effects on the interfacial fluctuations

As discussed in the previous section, the width of the interfaces between two polymer phases
can be substantially influenced by potentials that affect the spectrum of capillary waves. For
polymer thin films, two different behaviours have been observed experimentally that relate the
size of the system to the interfacial width. Experiments on the strongly immiscible polymer
pair polystyrene/poly(methyl-methacrylate) (PS/PMMA) showed that long ranged dispersion
forces acting across a very thin film introduce a cut-off for small wavevectors, leading to a
logarithmic dependence of the interfacial width on film thickness [5, 42, 43].

Instead, contrasting results were obtained from the investigation of a quasi-miscible
polymer pair, close to the critical point: the lower cut-off for capillary wavevectors was
determined in this case by the short ranged interactions between the polymer/polymer interface
and the other film boundaries; the measured interfacial width was found to vary with the square
root of the film thickness [11, 44].

Computer simulations of the thickness dependence of the interfacial profiles between
two polymer phases confined between rigid walls suggest that both these forces in principle
should be considered [23]; however, the mechanism by which the confined geometry affects
the interfacial width is not fully understood. The effect of long and short ranged forces on the
spectrum of capillary waves will be discussed in more detail in the next sections.

6.1. Long ranged dispersion forces

Van der Waals dispersion forces arise from the instantaneous dipole–dipole interaction between
atoms or molecules [45]. These forces, characterized by being effective on long ranges, are
always present, even between neutral systems, and play an important role in many physical
phenomena, such as wetting, adhesion or absorption. In the case of an interface between
two polymers, dispersion forces become important when one or both the phases are rather
thin. When a thin layer is interposed between two semi-infinite media, for example a polymer
substrate and another medium, there will be a van der Waals interaction between the two media
across the film inversely proportional to the fourth power of the thickness of the layer d [5]:

F(d) ∼ A

d4
(27)

where A is the Hamaker constant. The dispersion force may lead to a cut-off for small
wavevectors that suppresses capillary waves with wavelengths longer than a characteristic
capillary length adis. As a result, the contribution of capillary waves to the interfacial width
is reduced [5].
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Making use of equation (24), the following expression can be derived for a dispersive
length adis [5]:

adisp =
√

4πγ d4

|A| . (28)

As a result, for the interface between a polymer substrate and a thin film of thickness d , the
value of qmin in equation (23) is equal to 2π/adisp. The mean squared dispersion of capillary
waves is then given by

σ 2
ς = kBT

2γπ
ln

(
qmax

C1
d2

)
= kBT

2γπ

(
ln

(
qmax

C1

)
+ 2 ln d

)
(29)

where the constant C1 introduced is equal to
(

π A
γ

)1/2
. Thus the measured interfacial width

will vary logarithmically with the thickness of the film d , as observed in neutron reflectivity
experiments by Sferrazza et al [5].

6.2. Short ranged ‘truncation’ forces

For quasi-miscible polymer pairs, and thus broader interfaces, another effect related to the finite
size of the system needs to be taken into account. When the interfacial width is a considerable
fraction of the thickness of the film, there will be short ranged interactions between the interface
and the boundaries of the layer. A polymer molecule at the interface will be subject in this case
to an effective potential that takes the form [46–48]

V (d) ∝ e−kd (30)

where d is the distance of the interface from the boundary surface. This surface field will have
the effect of truncating the interfacial profile, by introducing a large correlation length ξ on
interfacial fluctuations in the direction parallel to the plane of the interface, which increases
exponentially with the thickness of the film d [49–51]:

ξ ≈ ξBekd/2 . (31)

In equation (31), ξB represents the bulk correlation length [50] and k−1 is a transverse
decay length. k is of the order of ξB for weakly immiscible polymer pairs, while it is
better approximated by the interfacial width in the limit case of strongly segregated polymer
mixtures [51]. ξB is defined by

ξB = a

6

/(
1 − φ

2N1
+ φ

2N2
− χφ(1 − φ)

)1/2

(32)

where a is the statistical segment length, N1 and N2 are the degrees of polymerization of the
two coexisting polymers, and φ is the coexistence composition [52].

The strong dependence of ξ on film thickness can be understood by considering that the
‘truncation effect’ is weak in thicker films, where the film boundaries are more distant from
the mean position of the interface. For thinner films instead it becomes more important and
the correlation length is smaller. As a result, the lower cut-off qmin is given by 2π/ξ and,
neglecting long ranged forces, the capillary wave mean square dispersion σ 2

ζ of equation (23)
takes the form

σ 2
ς = kBT

2γπ
ln

(
qmax

2π/ξ

)
= kBT

2γπ

(
ln

(
qmax

2π
ξB

)
+ kd

2

)
. (33)

It follows that, in the presence of short ranged forces, the contribution of capillary waves
to the interfacial width σ 2

ζ contains a term that is proportional to the film thickness d , as shown
experimentally by Kerle et al [11].
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In our work, by focusing on a system where we could change systematically the conditions
of miscibility, and in consequence the width of the interface, we could fully investigate the
effect of both long ranged dispersion forces, that lead to a logarithmic dependence of the
interfacial width on the thickness, and short ranged interactions that involve a square-root
dependence.

7. Neutron reflection

The interface between two immiscible polymers is typically smaller than 400/500 Å. The use
of a technique to measure the interfacial width must therefore take into consideration this length
scale. Moreover, a suitable contrast must be available between the two phases [53, 54].

Neutron reflectivity represents an ideal tool to probe polymer/polymer interfaces. This
technique provides an excellent spatial resolution, down to 1 nm, thanks to the short
wavelengths available for thermal neutrons. It also gives the possibility to investigate buried
interfaces, due to the high penetrating power of neutrons, which enables an incident neutron
beam to propagate in a solid medium before reaching an interface. This represents a great
advantage for the study of, for example, solid–liquid interfaces [55]. In addition, the neutron
beam produces less damage to a sample, allowing more successive measurements of the same
sample.

The success of the application of neutron reflectometry to polymers arises from the fact
that the scattering length density of materials can be altered by performing isotopic substitutions
between hydrogen and deuterium. This allows one to generate a large contrast between polymer
phases, and thus to be more sensitive to the interface.

Reflectivity experiments probe the mean change in the refractive index perpendicular to the
interfaces. Thus, from the analysis of the specular neutron reflection on a thin film structure, we
can obtain the one-dimensional scattering length density profile perpendicular to the surface,
which can be directly related to the chemical profile.

The reflectivity is given by R = |r |2, where r is the amplitude reflectance obtained by
solving the one-dimensional Schrödinger equation in the direction perpendicular to the sample.
If we have neutrons propagating from vacuum into a uniform material of scattering length
density b/V , the perpendicular component of the wavevector within the material ki is expressed
by

ki =
√

k2 − 4π
b

V
. (34)

In the case 4πb/V > k2, k is imaginary and then the neutrons propagate into the materials
only as an evanescent wave, giving rise to total external reflection (reflectivity is unity). In the
case of 4πb/V < k2 and a sharp interface (between vacuum and medium), the reflectivity is
given by the Fresnel expression.

R = |r |2 =
∣∣∣∣k − ki

k + ki

∣∣∣∣
2

(35)

that, for high value of k, has the limiting form of

R ∼ π2

(
b

V

)2 1

k4
. (36)

The reflectivity of a multilayer stack of thin film can be calculated by the following recursive
scheme. For each slab i and i − 1, the reflectance denoted by ri−1,i is given by the Fresnel
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expression:

R = |r |2 =
∣∣∣∣ki−1 − ki

ki−1 + ki

∣∣∣∣
2

. (37)

The combined reflectance of the interfaces between the substrate and layer n − 1, and layer
n − 1 and n − 2, denoted by rn−2,n , is given by the combination of these individual interfaces:

rn−2,n = rn−2,n−1 + rn−1,ne2ikn−1dn−1

1 + rn−2,n−1rn−1,ne2ikn−1dn−1
(38)

where d is the thickness of the slab. By combining this reflectance with the reflectance of
the interface between layers n − 3 and n − 2 to yield the reflectance of all interfaces from
n −3 to the substrate, the process can be continued recursively until the top interface is reached
and therefore the reflectivity is obtained. This algorithm can be applied to calculate a general
profile. By approximating a continuous profile by a stack of such thin layers (normally one
chooses layer thickness to give a constant increment in scattering length density between each
layer), one can calculate the reflectivity of any profile to the accuracy required within a given k
range.

The presence of a diffuse interface causes the reflectivity to fall off more rapidly than
k−4; hence, in the case of an interface between two semi-infinite media and if the deviation of
the interface from a flat surface can be described by Gaussian statistics, equation (37) can be
replaced by [53, 54]

RR(k) = RF(k) exp(−4k2σ 2) (39)

where RF(k) is the reflectivity in the absence of composition gradients at the interface.
In systems composed of different polymer layers, each interface could present Gaussian

roughness. If n layers are considered, the Fresnel reflection coefficient between the nth and the
(n − 1)th layers defined in equation (37) will be modified such that

rn,n+1 =
(

kn − kn+1

kn + kn+1

)
exp(−2σ 2

n+1knkn+1) (40)

and a more complicated expression for the reflectivity can be derived [53].
From a measured reflectivity profile it is thus possible to obtain information about the

roughness present at surfaces and interfaces. The interfacial profiles of a thin layer between two
semi-infinite media, considering the convolution of a sharp interface by a Gaussian smoothing
function [53, 54], can be evaluated with the following formula [56], derived using a Gaussian
roughness at each interface:

ρ(z) =
n∑

i=1

ρi − ρi+1

2

(
1 + erf

(
z − zi√

2σi

))
(41)

where ρi , σi and zi are respectively the scattering length density, the roughness and the distance
from the surface for layer i . In the absence of roughness the scattering length density profile is
represented by a step and the interface is sharp, while if roughness is considered between the
air and the layer the scattering length density increases smoothly and the interfacial region is
characterized by a well defined width.

The form of the interfacial profile generated by the error function (erf), as defined in
equation (41), is similar to the hyperbolic tangent profile predicted by the self-consistent
field theory, and presents a similar density gradient at the interface. The roughness evaluated
considering this profile is related to the interfacial width w, predicted by a hyperbolic tangent
profile, by the following relation [28]:

w =
√

π

2
σ. (42)
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Reflectivity measurements are very sensitive to small values of roughness, and narrow
interfacial widths can be determined with a resolution of a few ångströms. However, there
is an upper limit on the values of roughness that can be accurately measured: for very broad
interfaces the reflectivity will decay very fast and the precision with which the width can be
determined will depend on the angular resolution of the instrument [53, 54].

8. Systems studied: polyolefin blends

The focus of our work will be on systems consisting of blends of polyolefins with different
chain architectures. Previously we have done most work on the classic polystyrene and
poly(methyl methacrylate) [5, 42, 43]. In the latter system the segment–segment interaction
parameter is relatively large, so in our previous work we have been in the so-called strong
segregation regime, far away from criticality. Also, because of the large difference in
polarizability between the two components, dispersion forces are large in comparison to the
likely situation in the polyolefin mixtures; we have already used this system to demonstrate the
role of dispersion forces in providing a small wavevector cut-off on the spectrum of thermally
excited capillary waves, thus confirming the importance of the role of capillary waves in
substantially broadening the intrinsic interface profile [5].

The components of the polyolefin blends are prepared by the anionic polymerization
of butadiene, which is subsequently catalytically hydrogenated to produce a fully saturated
polyolefin. When butadiene is polymerized addition can take place either in the 1–2
configuration or in the 1–4 configuration; on hydrogenation a poly(1–2 butadiene) will yield
poly(ethyl ethylene) while poly(1–4 butadiene) yields poly(ethylene). The relative amounts
of 1–4 and 1–2 addition are controlled by the nature of the solvent; the normal non-polar
solvents such as cyclohexane produce mostly 1–4 addition, but on adding increased amounts
of polar cosolvents such as THF a higher proportion of 1–2 structures are obtained. Thus by
varying the solvent in which polymerization takes place random copolymers of ethylene and
ethyl ethylene can be produced with any desired copolymer ratio. When copolymers with
different copolymer ratios are mixed, there is an unfavourable thermodynamic interaction that
depends in a relatively simple way on the two copolymer ratios. This unfavourable interaction
arises from local packing considerations, and following a great deal of work on the bulk
thermodynamics of these systems by Graessley, Balsara and co-workers in the USA (see [8, 57]
and references therein) there is now a predictive framework in place allowing one to calculate
with fair accuracy the interaction parameter between any pair of copolymers.

Different conditions of miscibility were then probed by using a wide range of copolymer
ratios that were varied from 0.50 to 0.86, while the molecular weight was also varied between
150.000 and 1 M g mol−1. The χ parameter is calculated from the copolymer ratios ȳ using
the expression proposed by [8, 58–62]:

χ = (a0 + a1 ȳ + a2 ȳ2)(y2 − y1)
2 (43)

where ȳ is the mean copolymer ratio and the coefficients a0, a1 and a2 are linear combinations
of the interaction parameters χA/B, χA/A−B and χB/A−B (the interactions between homopolymer
and copolymer). The values of these coefficients have been determined experimentally for
random copolymers of butene and ethylene at different temperatures and are given in [8].

The values of these coefficients at 83 ◦C are respectively 0.062, −0.114 and 0.220 [8]. The
degree of immiscibility χ N , where N is the degree of polymerization of the polymers, was
then varied from 4.1 to 31.

With these polymer pairs, by continuously tuning the interaction parameters, we can
explore the full continuum of situations, from near criticality to strongly immiscible, and for
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near critical pairs at high molecular weight, where mean field behaviour is expected, to much
smaller molecular weights.

9. Samples preparation and neutron reflectivity experiments

The samples for neutron reflectivity were prepared as follows: bilayers of 50% deuterated and
hydrogenated random copolymers were prepared. The substrate was a silicon block (orientation
(111)) with a 5 cm diameter and 5 mm thickness, covered by a thin layer of silicon oxide of
thickness between 2 and 3 nm. For the experiments the structure of the samples was silicon
substrate/deuterated copolymer/hydrogenous copolymer/air (D/H). In this geometry, since the
value of the scattering length density of the hydrogenated copolymer is close to zero, there
is a small contrast at the top surface between the sample and the air. The sensitivity of the
measurement to the presence of a diffuse interface between the two polymers is therefore
improved [63]. The bottom deuterated layer of the co-polymer has been spun cast onto silicon
substrate from toluene solutions, while the top hydrogenated layer was first spun onto a glass
slide and then floated in water and deposited onto the substrate. The samples were then
annealed in a vacuum oven for 5 days at a temperature of around 83 ◦C, well above the glass
transition temperature of the polymers, to allow the interfacial width to reach an equilibrium
value [64].

Various systems have been studied: in one case we kept fixed the molecular weight
(150 000 g mol−1 corresponding to a degree of polymerization N of 2500) and different
conditions of miscibility were probed by changing the combinations of copolymer ratios, and
thus the interaction parameter χ , from 0.0008–0.012, and in another case we selected various
values of the interaction parameter in the range 0.0009–0.0022 and changed the average value
of N between 2400 and 16 000.

Moreover, systems were probed to approach criticality by varying the molecular weight
of the polymers between 100 000 and 900 000 g mol−1 for fixed values of the interaction
parameter in the range 0.0009–0.0022.

The isotopic substitution H–D may affect the thermodynamic interaction, as observed in
previous studies: the resulting χ parameter of the system will be decreased when the blend
with the lower copolymer ratio is deuterated, while it will be higher in the other case [61, 62].
However, the error in the determination of the value of χ for the combinations of copolymer
ratios used in the experimental work was estimated to be less than 5% [57, 8, 61].

The neutron reflectivity profiles were measured using various reflectometers: D17 at the
Institut Max Von Laue–Paul Langevin (Grenoble) [65], CRISP at the Rutherford Appleton
Laboratory (UK) [54], V6 at the Hein–Meitner Institute in Berlin (Germany), and the
reflectometer AMOR at the Paul Scherrer Institute in Switzerland. The resolution used varied
between 3% and 5%.

The reflectivity profiles obtained from the bilayers were then fitted using a silicon/silicon
oxide/deuterated polymer/hydrogenated copolymer/air model, with Gaussian roughness at the
surface and at the polymer/polymer interface. In this configuration, since the hydrogenated film
has a very low scattering length density, there is not much contrast between the air and the top
surface of the sample. Thus the reflectivity measurement is not very sensitive to the value of
the surface roughness.

The thickness of both the silicon oxide layer and the copolymer films were also previously
measured with spectroscopic ellipsometry. The roughness of the SiO2 layer was fixed to 5 Å, as
measured previously in similar silicon crystals [5]. The scattering length density and the surface
roughness of the polymers were also determined with neutron reflectivity experiments on single
layers and then fixed during the fitting. For deuterated copolymers the value of scattering length
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density was around 3 × 10−6 Å
−2

, while for hydrogenated blends it was found to be between
2 × 10−7 and −3 × 10−7 Å

−2
. The surface roughness was around 8 Å for all the copolymers,

as also measured from AFM experiments [64].

10. Interfaces in polymer systems approaching criticality

To investigate the dependence of the interfacial width on the distance from the critical point,
pairs of hydrogenated and partially deuterated copolymers of ethylene and butene were studied
with neutron reflectivity. As we have mentioned before, the width of the interface is determined
by a balance between the entropy of the system, mainly related to the number of units in the
two polymer chains N , and the unfavourable energetic interaction between different monomers
described by χ . Thus there are two ways to achieve criticality. For polymer pairs with a small
interaction parameter, χ , the critical point occurs at higher molecular weights, while more
interacting systems reach criticality at lower N .

In order to understand the relative importance of energetic interactions and entropic effects
in determining the interfacial profile, two different sets of experiments have been performed.
In the first set the molecular weight has been fixed, and different conditions of miscibility
have been probed by changing the combinations of copolymer ratios, and thus the interaction
parameter. The values of χ varied between 0.001 and 0.011, while the molecular weight was
fixed at four different values in the range 150 000–600 000 g mol−1. In other series of samples,
criticality was approached by varying the molecular weight of the polymers between 100 000
and 900 000 g mol−1 for fixed values of the interaction parameter in the range 0.0009–0.0023.

The samples have been annealed in a vacuum oven for 5 days at temperatures between
27 and 121 ◦C well above the glass transition of the two polyolefins [66]. For some samples
longer annealing times, up to 12 days, have also been used. Bilayers of random copolymers of
ethylene and butene have been prepared following the procedure described in section 4.

The structure of the samples was silicon substrate/deuterated copolymer/hydrogenous
copolymer/air (D/H). In this geometry, since the value of the scattering length density of the
hydrogenated copolymer is close to zero, there is a small contrast at the top surface between
the sample and the air, and the sensitivity of the measurement to the presence of a diffuse
interface between the two polymers should improve. For some samples, the deuterated film
was deposited on top of the hydrogenated film (H/D). Both the layers had a thickness between
2600 and 5000 Å, in order to avoid the presence of confinement effects, which have been
observed in thinner films [5, 11].

Figure 1 shows examples of neutron reflectivity profiles measured from D/H bilayers with
degree of polymerization N ∼ 2500 for three different values of χ—0.0112, 0.0033 and
0.0018. All the curves present total reflection up to qc ∼ 0.0125 Å

−1
due to the presence

of approximately the same amount of deuterium in the bottom layer. From the figure we
can observe that, after the critical edge, the reflectivity profiles fall off more rapidly as the
degree of immiscibility χ N is decreased, being an indication of a rough interface. This is more
pronounced when the interaction parameter χ is decreased from 0.0033 to 0.0018.

From the values of interfacial roughness σINT found from the fits, the total width of
the interface 2w, as given by a hyperbolic tangent profile, has then been determined with
the relation (42). Figure 2 shows the results obtained for polymer pairs with degree of
polymerization N ∼ 2500 and different interaction parameters as a function of the degree
of immiscibility χ N . The dependence of the interfacial width on the distance from the
critical point presents two different behaviours: for degrees of immiscibility higher than 8
the interfacial region increases gradually as the interaction parameter is decreased, while for

16



J. Phys.: Condens. Matter 19 (2007) 073102 Topical Review

0.03 0.06 0.09 0.12 0.15

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
χ         χN 

  0.011      31
  0.003      9.2
  0.002      4.4

R
ef

le
ct

iv
ity

q(Å-1)

Figure 1. Reflectivity profiles for copolymer pairs with different interaction parameter χ and degree
of polymerization N ∼ 2500 (each layer thickness is between 2600 and 5000 Å and the Kiessig
fringes are then unresolved).
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Figure 2. Interfacial width as a function of the degree of immiscibility N for polymer pairs with
changing interaction parameter and degree of polymerization N ∼ 2500. The experimental data
are compared to the numerical calculations of the SCF theory (solid line) and to the theoretical
predictions in the strong segregation limit (SSL) (dot–dashed line). The dashed line is obtained by
using the squared gradient theory in the weak segregation limit (WSL).

χ N < 8 the dependence of the interfacial width on the degree of immiscibility becomes
stronger, and the interface starts to diverge [67].

To verify the validity of the analytical expressions for the interfacial width and the
interfacial tension in the approximations of strong and weak segregation, the experimental data
obtained have been compared with the predictions of the theory in these limits. As reviewed
in sections 3 and 4, the self-consistent field theory, in the strong segregation limit, with the
additional correction for interfacial fluctuations, should describe the behaviour of the interfacial
width for highly immiscible polymers, but when approaching the critical point the predictions
of square gradient theory, in the weak segregation limit, should be more accurate.

In order to compare the experimental results to the theoretical predictions the contribution
of capillary waves needs to be taken into account. As seen before, the experimental interfacial
profile is broadened by thermally excited fluctuations, which give rise to a dependence of the
apparent interfacial width on the lateral resolution. Hence the total interfacial width 2w can be
written as

2w = (4w2
I + 2πσ 2

ς )1/2. (44)
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In equation (44), wI represents the intrinsic interfacial width while σ 2
ς is the capillary wave

mean dispersion introduced in section 5. In the experiments performed, the lower cut-off for
capillary wavevectors qmin is introduced by the lateral coherence length of the neutron beam,
λcohe, of approximately 20 μm [5]. The product πwI has been used as a cut-off for short
wavelengths [39, 68]. Thus the contribution of capillary waves to the interfacial width is given
by

σ 2
ς = kBT

2πγ
ln

λcohe

πwI
(45)

where kB is the Boltzmann constant, T is the temperature and γ is the interfacial tension. In the
strong segregation limit (SSL) wI and γ were determined by using respectively equations (10)
and (11), while in the weak segregation limit (WSL) expressions (17) and (18) were used.
In the calculation a value of a of 6 Å [11], and an average volume for the monomer unit of
75 Å

3
[57], were considered, while χ has been calculated with equation (43). A theoretical

estimation of the interfacial width 2w has then been obtained, by using the value estimated for
σ 2

ς with equation (45) in (44).
Figure 2 shows the comparison between the analytical values and the experimental data. At

intermediate degrees of immiscibility, for values of χ N between 6 and 15, the SSL curve better
approximates the data; however, for more immiscible systems the measured interfacial width is
broader than the theoretical predictions. As the miscibility between the polymers is increased
a transition is observed to a region where analytical expressions cannot be used to predict the
interfacial width: the experimental values found for χ N between 3 and 6 are between the
two theoretical curves. For the lowest values of degrees of immiscibility studied, when the
interfacial width starts to diverge, the square gradient theory in the WSL better represents the
results.

To make a more quantitative analysis the results have been compared with numerical
calculations of the self-consistent field (SCF) theory. Following the mean field approximation,
numerical simulations can be used to determine the width of the interface [25] as a function of
the degree of miscibility and of the statistical segment length of the polymers a. The interfacial
tension can also be determined if the density of the polymers is known. Since the density
is taken to be constant, the only model parameter is χ N and no knowledge of the equation
of state is required [24]. A more detailed account of these calculations can be found in the
appendix [23–25].

In the SCF numerical calculations, the width was determined from the order parameter
profile m(z) = �A(z) − �B(z) following the second moment definition, dm/dz, appropriate
for erf profiles:

w2
m =

∫
dz (dm/dz)z2∫
dz (dm/dz)

. (46)

It should be pointed out that in the limit χ N → ∞ (strong segregation limit) the exact solution
of the SCF theory is a tanh profile [25]. Even close to the critical point, our SCF profiles are
better approximated by tanh profiles than by erf profiles. However, this difference does not
significantly affect our results.

Moreover, the second moment definition, equation (46), wm for the interfacial width differs
somewhat from the usual definition of wI in the theoretical literature, wI = |m(∞)|/(dm/dz)o,
which is, e.g., used in equations (12) and (17). For tanh profiles the relation is wm ∼ 0.9wI, and
for erf profiles wm ∼ 0.8wI (werf (equation (42)) ∼ 1.1wI (equation (9)), wNR (equation (39))
∼ 0.9wI, wm (equation (46)) ∼ 0.8 ∗ 0.9 ∗ wI)

In figure 2 the results have been compared to the experimental data. As displayed in
for N ∼ 2500, the self-consistent field theory well describes the experimental data at low
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Figure 3. Interfacial width as a function of the interaction parameter χ for series of polymer
pairs with fixed degrees of polymerization N . The experimental data are compared to numerical
calculations of SCF theory for N = 2500 (solid line), N = 4900 (dot–dashed line) and N = 6800
(dashed line).

values of χ , for χ N < 20. However, for degrees of immiscibility higher than 13, and
thus χ > 0.005, the results show discrepancies between experimental data and theoretical
calculations. The measured interface is broader than the prediction. However, if the values
of the interfacial tension are reduced by approximately 40%, and thus a higher contribution
to the interface due to capillary waves is considered, the theoretical predictions describe well
the interfacial width also for more immiscible systems. Lower values of interfacial tension
were observed by other authors [29] and were confirmed by our experiments on the effect of
the confinement approaching criticality [64], where systematically we observed a 40% reduced
interfacial tension from the predicted SCF values.

A qualitatively similar behaviour is observed for higher degrees of polymerization, where
the divergence from the theoretical predictions at higher values of χ becomes more important.
To understand better the effect of the degree of polymerization N on the interfacial width as
criticality is approached, in figure 3 the data obtained for the interfacial width for series of
polymer pairs with different degrees of polymerization is plotted as a function of the square
root of the interaction parameter χ . As can be observed in the figure, at higher values of the
interaction parameter χ(

√
χ � 0.04) the experimental data collapse.

Thus in this case the degree of polymerization does not affect the interfacial width and
the approximation of infinite relative molecular masses is valid. This behaviour also suggests
that the discrepancy observed between experimental data and theoretical predictions at higher
degrees of immiscibility is not influenced by the molecular weight, but depends only on the
interaction parameter χ . For less interacting systems, polymer pairs with higher degree of
polymerization show a narrower interface, in agreement with the theoretical predictions. Thus,
as criticality is approached, the length of the polymer chains becomes an important factor in
determining the divergence of the interface.

For polymer pairs with fixed interaction parameter and varying molecular weights,
the dependence of the interfacial width on the degree of polymerization N has also been
determined. For these systems, at higher values of χ N , as the distance from the critical point
is reduced, the interfacial width is almost constant. However, for more miscible polymer pairs,
the dependence of the width 2w on the molecular weight becomes stronger. Comparing the
results obtained for different values of χ , systems with a lower interaction parameter present a
wider interface. In particular, for values of χ lower than 0.0014 we observe a good agreement
between the experimental data and the SCFT predictions over a wide range of miscibility.
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Figure 4. Interfacial width multiplied by χ1/2 as a function of the inverse of the degree of
immiscibility for series of polymer pairs with different degrees of polymerization N and fixed
interaction parameters. The solid lines are obtained from numerical calculations of SCF theory
for χ = 0.0012.

However, for higher values of χ (0.0016 and 0.0022) there is a divergence with the theory
at higher molecular weights and the measured interface is broader. This behaviour could be
explained again considering a lower interfacial tension, and thus a higher contribution to the
interface due to capillary waves, at higher χ N . A discrepancy is also observed close to the
critical point for χ N lower than 3.

These deviations from the theoretical predictions are clearer in figure 4, where the product
of the interfacial width with the square root of the interaction parameter has been plotted as a
function of the inverse of the degree of immiscibility for all sets of data. Since the interfacial
width, for fixed values of χ N , depends principally on χ1/2, the theoretical curves representing
2w χ1/2 as a function of 1/χ N collapse onto a single line. It should be pointed out that the
contribution of capillary waves to the interfacial width varies with χ1/4 and not with χ1/2 as
the intrinsic width. However, the corrections due to this dependence are very small, as shown
when the theoretical curves for different values of χ were calculated. Differences between
theory and experimental results are observed only for χ higher than 0.0016 and at very low
degrees of immiscibility.

For all the systems studied, the experimental results have shown that as the miscibility is
increased the interfacial region becomes broader. For strongly immiscible polymer pairs the
width of the interface increases slowly when the degree of immiscibility is decreased. The
interfacial width varies in this case only with the interaction parameter χ , and it is independent
of the degree of polymerization N of the polymers. Closer to the critical point the dependence
on the degree of miscibility is stronger and the way in which the interfacial width diverges,
as criticality is approached, is determined by both the interaction parameter of the polymers
and the molecular weight. The results have been compared with numerical calculations of the
self-consistent field theory. The theory, with the additional contribution due to capillary waves,
provides a good prediction of the width of the interface at intermediate values of χ .

11. Confinement effects on fluctuations at interfaces: long ranged and short ranged
forces

Polymer molecules in situations of reduced dimensionality often exhibit properties that deviate
from those of bulk materials [34]. In thin films, with thickness smaller than a few times
the radius of gyration of the molecule, differences in the structural and dynamical properties
of the polymers have been observed both experimentally and with simulations [69–73].
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These include, for example, changes in the glass transition temperature with decreasing film
thickness [69, 70], different chain mobility [71, 72] and a higher compressibility in thinner
films [73]. Moreover, it has been shown that effects due to confinement and to molecular
interactions in thin film geometry are often responsible for novel physical phenomena. To cite
an example, long ranged intermolecular interactions can affect the stability or instability of thin
films below a certain thickness [74, 7], leading, in some cases, to spinodal dewetting, and to
the formation of patterned structures characterized by a well defined length [75].

Geometric confinement also has an important effect on the interface between two
immiscible polymers. Experiments by different groups have shown that the width of the
interface between two thin layers depends on the thickness of the films [5, 11, 42–44]. For very
thin films the spectrum of capillary waves is modified by the constraint due to the confined
geometry, and the measured interfacial width is lower. However, there is a controversy in
the literature concerning the relative importance of short and long ranged forces in modifying
interfacial fluctuations.

Neutron reflectivity experiments on bilayers of PS/PMMA have shown that for this
strongly immiscible polymer pair, when the thickness of the films is thinner than a hundred
nanometres, the lower cut-off for the capillary fluctuations is not given by the neutron coherent
length, but might be originated by the long ranged van der Waals interactions acting across the
films. As a result, in thinner layers the measured interfacial width increases logarithmically
with the thickness [5].

For broader interfaces another effect might be considered. The presence of short ranged
interactions, i.e. truncation forces due to the cut-off of the interfacial profile by a wall, may
introduce another cut-off on the spectrum of capillary waves. Thus, in this case, the measured
interfacial width depends strongly on the size of the system and increases with the square root
of the film thickness, as observed by nuclear reaction analysis experiments on films of blends
of quasi-miscible polymers [11, 44].

Computer simulations on the size dependence of the interfacial profiles between polymeric
phases confined between walls have suggested that both these forces in principle should be
taken into account [22, 23, 50, 51, 76]. These Monte Carlo studies have shown that the longest
wavelengths of capillary waves are determined by a parallel correlation length that incorporates
two contributions, a short ranged one due to the distortion of the profile close to the wall and
a long ranged one due to Van der Waals interactions. However the interplay of short and long
ranged interactions at the interface is still not well understood, and the role of these forces in
determining the width of the interface in thin films, as criticality is approached, remains an
open question.

The mechanism by which finite size effects influence the interfacial width between two
polymers was studied by performing neutron reflectivity experiments on bilayers of polyolefins.
Polymer pairs with changing interaction parameter and molecular weight were investigated, to
determine how the effect of confinement on interfacial fluctuations depends on the different
conditions of miscibility.

To investigate the effect of confinement on the interface between two polymer phases,
neutron reflectivity experiments were performed on bilayers of hydrogenated and partially
deuterated random copolymers of ethylene and butene, as described previously. The thickness
of the top layer was fixed at values between 2500 and 5000 Å, while the thickness of the bottom
film was varied in the range 700–9000 Å. To allow the interfacial width to reach an equilibrium
state, all the samples were annealed in a vacuum oven for 5 days at about 83 ◦C, as previously
done.

Different conditions of miscibility were probed by using a wide range of copolymer
ratios and different molecular weights. In order to understand how van der Waals forces
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Figure 5. NR of bilayers of polyolefin. The top h-layer (copolymer ratio 86%) was around
4000 Å for both samples while the bottom d-layer (copolymer ratio 70%) was 785 Å (�) and
4225 Å (◦). Fits using a three-layer model are shown as lines. In the inset the density profiles
extracted from the fits are shown.
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Figure 6. Interfacial roughness as a function of the bottom layer thickness of all the systems
measured with NR. The legend shows the different χ N values. The fits using the capillary wave
model, as described in the text, for the two extreme cases are also shown.

and truncation forces interplay at the interface as the interaction between the polymers is
changed, the interfacial width was investigated for combinations of copolymers with interaction
parameter χ between 0.011 and 0.002, and with degree of polymerization N ∼ 2500.
Figure 5 shows, as an example, reflectivity curves obtained for polymer pairs with degree of
immiscibility of χ N = 6.2, and N ∼ 2500, for two different thicknesses of the bottom layer:
785 Å (square (red) symbols) and 4225 Å (circular (black) symbols). In the first profile the
fringes characteristic of the thickness of the bottom layer are clearly visible. As the thickness
of the bottom layer is increased, the fringes disappear and the reflectivity, at values of q bigger
than qc, falls off more rapidly, indicating a wider interface in thicker layers. The density profiles
extracted by the fit are shown in the inset.

From the fits of the reflectivity profiles, the interface roughness as a function of the bottom
layer thickness was obtained and is shown in figure 6 for various χ N .

For all different χ N , the roughness increases with the thickness up to a limit value, after
which it is stable. By comparing systems with different degrees of immiscibility, it can also
be observed that as the layer thickness is increased the interface roughness increases much
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faster for weakly immiscible polymer pairs, and the value of the limit thickness at which the
interfacial width reaches equilibrium is higher. Moreover, as the degree of immiscibility is
decreased and the interface becomes broader, the dependence on the thickness of the bottom
layer is stronger.

To understand the relative importance of short and long ranged forces in influencing the
width of the interface, a more quantitative analysis is needed. As seen previously, the interfacial
roughness σINT between immiscible polymers can be assumed as the sum of two different
contributions:

σ 2
INT = �2

0 + σ 2
ς (47)

where �0 is related to the theoretical intrinsic interfacial width wI (as calculated by the self-
consistent field theory) by the expression �2

0 = 2w2
I /π , and σ 2

ζ represents the capillary wave
contribution to the interface. In the experiments performed on thicker layers, the cut-off for
short wavelengths was given by πwI [39], while the lower cut-off for capillary wavevectors
qmin is related to the lateral coherence length of the neutron beam, λcohe, of the order of microns.
For thinner films, as reviewed in section 6, external forces affect the spectrum of the capillary
waves, introducing a different cut-off for long wavelengths λmax that depends on the thickness
of the films. The capillary wave mean square dispersion σ 2

ζ can then be written as follows:

σ 2
ς (d) = kBT

4πγ
ln

(1/πwI)
2

(1/λcohe)2 + (1/λmax)2
(48)

where kB is the Boltzmann constant, T is the temperature and γ is the interfacial tension.
For a thin polymer layer between two semi-infinite media, the dispersion forces acting

across the film introduce a dispersive capillary length adisp, given by equation (28).
For the samples studied, since the thickness of the top layer was fixed at several hundred

nanometres, while the thickness of the bottom layer was varied, the Hamaker constant in
equation (28) represents the dispersion interaction between the top thick layer of polymer and
the silicon substrate across the thin bottom film. For small values of d , adis given by (28) will
provide the lower wavevector cut-off λmax in equation (48), leading to a logarithmic dependence
of the interfacial roughness on film thickness.

For broader interfaces another effect needs to be taken into account. The short ranged
interactions between the surface and the interface modify the interfacial profile. Interfacial
fluctuations are then characterized by a large lateral correlation length ξ [46, 49, 77] (given by
equation (31)) which increases exponentially with the thickness of the film, d , and can act as a
cut-off for long wavelength capillary waves.

The capillary wave mean square dispersion σ 2
ζ can then be calculated, considering that the

cut-off λmax of equation (48) is given by ξ of relation (31). As a result, for very thin layers, in
the absence of long ranged forces, the contribution of capillary waves to the interfacial width
contains a term that is proportional to the square root of the film thickness d .

To determine the relative importance of long and short ranged forces, the experimental
data have been fitted to equation (47), where λmax in σ 2

ζ was equal to adisp for the case of long
ranged forces and equal to ξ for the short ranged forces. This means that for a thin layer, in
the absence of long range forces, the capillary wave mean square dispersion has an expression
containing a term that is proportional to the thickness of the film d .

Fixing the neutron lateral coherence length λcohe to ∼20 μm, as previously done [5], for
χ N � 9 the experimental data were in good agreement with the theoretical prediction of a
logarithmic dependence on the film thickness characteristic of long ranged forces.

The best fit for χ N = 31, shown in figure 7 at the bottom, is achieved for �0 = 20 ± 3 Å
and γ = (0.93 ± 0.25) mJ m−2. The predictions of the self-consistent field theory (SCFT) for
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Figure 7. Interfacial roughness as a function of the bottom layer thickness for two systems with
χ N = 31 (bottom) and χ N = 4.1 (top). The lines in the top part are fits using equation (48) where
λ = ξ without (dotted line) and with (solid line) the intrinsic width depending on the thickness. In
the bottom part the line is a fit to the experimental data using equation (48) with λ = adisp. See the
text for details.

�0 and γ in the strong segregation limit are �0 = 18 Å and γ = 1.7 mJ m−2 respectively.
For χ N = 13.8, the best fit is obtained for �0 = (23 ± 4) Å and γ = (0.77 ± 0.28) mJ m−2,
while the predicted values are �0 = 24 Å and γ = 1.3 mJ m−2. Thus the comparisons of
�0 with the theory are good, while the interfacial tensions obtained are in general lower than
the predicted values. Similar differences have also been found in numerical self-consistent
field calculations and may be related to chain-end effects, as suggested by Werner et al [23].
However, the calculated reduction for the interfacial tension (8% for χ N = 31, and 18% for
χ N = 13.8) could only partially explain the different results.

The Hamaker constant obtained from the fits was ∼5 × 10−20 J. This value is larger than
the one obtained from calculations based on the Lifshitz theory4. For the polymer pair with
χ N = 31, by using for the deuterated and the hydrogenated layers respectively the values of
refractive index n1 = 1.455 and n2 = 1.478, estimated by ellipsometry measurements, the
Hamaker constant found was ∼8 × 10−21 J. Similar discrepancies have been found in other
systems, where the van der Waals interaction between a liquid and a solid substrate through
a polymer thin layer deduced from the experiments was higher than the expected value [78].
However, since in equation (48) the Hamaker constant appears inside a logarithm, the results
are not very sensitive to the exact value.

For lower degrees of immiscibility and in the region of transition, assuming λ = adisp in
equation (1), it is not possible to fit the data. For χ N = 4.1, equation (48) with λ = ξ better
approximates the experimental data for bottom layer thickness larger than ∼1000 Å, as shown
in figure 7 (top part).

4 The non-retarded Hamaker constant between two phases, 1 (silicon substrate in the case considered)
and 2 (hydrogenated polyolefin), interacting across a medium 3 (deuterated polyolefin), assumes the following
expression [45]:

A ∼ 3

4
kT

(ε1 − ε3)(ε2 − ε3)

(ε1 + ε3)(ε2 + ε3)
+ 3hνe

8
√

2

(n2
1 − n2

3)(n
2
2 − n2

3)

(n2
1 + n2

3)
1/2(n2

2 + n2
3)

1/2[(n2
1 + n2

3)
1/2 + (n2

2 + n2
3)

1/2] .

By using for the main electronic absorption frequency νe the value 3 × 1015 s−1 and for the refractive index of the
media n1 = 3.5, n2 = 1.455, and n3 = 1.478, a Hamaker constant of 8 × 10−21 J is obtained.
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The extrapolated values for �0 and γ are �0 = (52±8) Å and γ = (0.09±0.04) mJ m−2

respectively, while those for ξB, given by equation (32), and k−1 are ξB = (69 ± 8) Å and
k−1 = (150 ± 12) Å respectively. The obtained value of ξB is in good agreement with the
theoretical value of 77 Å estimated using the standard mean field approximation [11, 16, 51],
and the obtained k−1 is also of the same order as the experimental width w—equal to
(118 ± 16) Å. For bottom layers thinner than ∼100 nm the dependence of the interfacial
roughness on the thickness becomes stronger, as clearly visible in the top part of figure 7. For
thin layers of the order of five times the interfacial width, short range forces may affect not
only the capillary wave contribution to the interface but also the intrinsic interfacial width.
This ‘squeezing’ of the intrinsic interface has been predicted by Binder et al in simulation [50]
using a Ginzburg–Landau type theory. In their simulation, preferential attraction of the species
for the walls was introduced in the free energy of the film. Using the approach of Binder et al
[50] in the weak segregation limit, the intrinsic interface should depend on the thickness in the
following way:

wI(d) = wI(∞)√
1 + C · exp(−d/(2 · ξB))

(49)

where d is the film thickness, C is a constant related to the parameters characterizing surface
interactions and wI(∞) is the intrinsic width at larger value of thickness.

Using this expression for the intrinsic width with the capillary wave term as before, we
have fitted the data and the following parameters have been obtained: �0 = (60 ± 8) Å,
γ = (0.06 ± 0.04) mJ m−2, ξB = (69 ± 8) Å, k−1 = (150 ± 12) Å and C = 50 ± 20.
Figure 2, top part, also reports this fit obtained (solid line) showing a good agreement also at
lower thickness. These parameters are similar to the one reported before and the value of C is
slightly higher than but of the same order as the value of 16 predicted theoretically in the weak
segregation limit [49]. This result may suggest the need of an additional effect that cannot be
explained by a simple Flory–Higgins or SCF theory for a planar slab.

For intermediate values of χ N , it is not possible to fit the data assuming λmax = adisp

or λmax = ξ . The thickness dependence, in this case, may be due to the effect of both short
and long ranged forces. An attempt to describe the experimental results was made assuming
simple additivity between the two different interactions, and thus using for 1/λmax the following
expression:

1

λmax
= 1

adisp
+ 1

ξ
. (50)

However, with this approach, previously used in Monte Carlo simulations [23], it was not
possible to fit the experimental values obtained for the interfacial roughness for thinner bottom
layers. This suggests that the combination of short and long range forces leads to a more
complicated dependence of the interfacial width on film thickness.

To investigate the limit of long ranged forces in modifying the spectrum of capillary waves,
with an approach that was independent on the parameters chosen for the single fits, a different
analysis of the experimental data was also carried out. As observed previously, the capillary
wave mean dispersion σ 2

ζ for thicker bottom layers can be written as

σ 2
ς = kBT

4πγ
ln

(1/πwI)
2

(1/λcohe)2
. (51)

For thin films, if the cut-off for long wavelengths is determined only by long ranged forces, the
contribution of capillary waves to the interface is given by

σ 2
ς (d) = kBT

4πγ
ln

(1/πwI)
2

(1/λcohe)2 + (A/4πγ d4)
. (52)
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The difference in capillary wave mean square dispersion between thick and thin layer cases,
�σ 2

ζ , is then given by the following relation:

σ 2
ς − σ 2

ς (d) = �σ 2
ς = kBT

4πγ
ln

(1/λcohe)
2 + (A/4πγ d4)

(1/λcohe)2
. (53)

Taking the exponential of both left- and right-hand sides, equation (53) can then be rewritten
as

γ (e�σ 2
ς γ /A′ − 1) = A′′ 1

d4
(54)

where A′ and A′′ are two constants defined as

A′ = kBT

4π
(55)

and

A′′ = Aλ2
cohe

4π
. (56)

It should be noticed that the Hamaker constant A in equation (56) might not have exactly the
same value for the different polymer pairs investigated. However, small changes are expected
for the combinations of copolymer ratios used, as also confirmed by measurements of the
refractive index for the different copolymers performed by ellipsometry5.

In equation (54) the right-hand side does not depend on the degree of miscibility, therefore
it is possible to introduce a function F(γ,�σ 2

ζ ) defined as

F(γ,�σ 2
ζ ) = γ (e�σ 2

ς γ /A′ − 1) (57)

that for the different conditions of miscibility studied will vary only with the thickness of the
bottom layer d:

F(γ,�σ 2
ζ ) = A′′ 1

d4
. (58)

Making use of relation (47), the quantity �σ 2
ζ can be calculated directly from the experimental

data, as the difference between the limit value reached by the interfacial roughness and the
values of σINT measured for different thicknesses of the bottom layers. Thus, by using for
the interfacial tension γ the values predicted by numerical calculations of SCF theory (see the
appendix), it is possible to calculate the values of F(γ,�σ 2

ζ ) as a function of the thickness of
the layers for the different conditions of miscibility.

In figure 8 the function F(γ,�σ 2
ζ ), using for the interfacial tension γ the values predicted

by numerical calculations of SCF theory, is plotted on a logarithmic scale as a function of 1/d4.
For χ N higher than 6.8 the data collapse to the same values, as shown by the trend line, and
the assumption of a logarithmic dependence on the thickness is verified: in this range therefore
long ranged forces are dominant in determining the width of the interface. For lower degrees
of immiscibility the dependence on the thickness of the bottom layer becomes stronger as the
miscibility is increased and the interface is broader. This suggests that in this case short ranged
forces are more important in determining the interfacial profile. The same results are obtained
if different expressions for the interfacial tension, such as the interpolation formula suggested
by Tang and Freed [18] and the values extracted with the approximation given by Werner et al
[23], are used to calculate F(γ,�σ 2

ζ ).

5 By using the formula reported in footnote 4, the values of the Hamaker constant estimated for the copolymer pairs
χ N = 31 (n2 = 1.463, and n3 = 1.478) and χ N = 9 (n2 = 1.467, and n3 = 1.478) are respectively ∼5 × 10−21 J
and ∼4 × 10−21 J.

26



J. Phys.: Condens. Matter 19 (2007) 073102 Topical Review

0 2x1028 4x1028 6x1028
10-7

103

1013

F
(γ

, Δ
σ ζ2 ) 

           χχχχN
 4.4
 4.8
 6.2
 6.8
 9.2
  13
  31

(1/thickness4)(Å-4)

Figure 8. Function F(γ,�σ 2
ζ ) defined by equation (58) plotted as a function of (1/bottom layer

thickness4) for different degrees of immiscibility χ N . For values of χ N higher than 6.8 the data
collapse to the same values, as shown by the solid (red) line (guide to the eye), and the assumption
of a logarithmic dependence on the thickness is verified.

Our results offer an explanation for the contrasting experimental results obtained in
previous studies of interfacial widths between coexisting polymer phases. Kerle et al [11, 44]
observed a square root dependence on the thickness for a polymer pair rather close to the critical
point, while our data showed instead a logarithmic dependence on the thickness for the strongly
immiscible polymer pair PS/PMMA [5, 42, 43].

12. Fluctuations at interfaces: chain length effects

One important and open question is to determine what role the molecular weight of the
polymers plays in both situations. To probe the effect of a confined geometry on the interface
between polymers with different chain lengths, and thus to have a more complete understanding
of the dependence of the interfacial width on the thickness in different conditions of miscibility,
we investigated here the interface between polymer pairs varying both the molecular weight and
the interaction parameter [79].

Figure 9 shows, as an example, reflectivity curves obtained for a polymer pair with
interaction parameter χ = 0.0016 and degree of polymerization N ∼ 4520 for two different
thicknesses of the bottom layer: 810 and 3500 Å. The reflection is stronger in the first
profile, that shows clearly the fringes due to the presence of a thin bottom layer, while the
reflectivity falls off more rapidly as the thickness of the bottom layer is increased, indicating
a wider interface in thicker layers. The fits obtained by a least-square fit to a three-layer
model (Si/SiO2/D-polymer/H-polymer) with Gaussian roughness at the surface and at the
polymer/polymer interface are also displayed in figure 9.

From the reflectivity profiles obtained, the dependence of the interface roughness on the
thickness of the bottom layer has been determined. As previously observed for systems with
lower molecular weights, the results showed that the interfacial roughness increases with the
thickness up to a limit value, after which it is constant. The mechanism by which finite size
effects influence the interface is not determined only by the limit width of the interfacial region,
but depends also on the degree of polymerization of the polymers. By comparing systems with
different molecular weights and similar interfacial widths in the absence of confinement, the
effect of a confined geometry on the interface between polymers with longer chains can be
better understood.
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Figure 9. Neutron reflectivity profiles, collected at CRISP, of bilayers of polyolefin with interaction
parameter χ = 0.0016 and degree of polymerization N ∼ 4520. The top hydrogenated layer was
around 4000 Å for both samples while the bottom deuterated layer was 810 Å for the circle symbols
and 3500 Å for the square symbols. Clearly, the fringes corresponding to the thickness of the bottom
layer are visible for the thinner film. The values found from the fits, displayed as solid lines, were
respectively (54 ± 5) Å and (68 ± 6) Å.
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Figure 10. Interface roughness as a function of the bottom layer thickness for polymer pairs with
χ = 0.0033 and different degrees of polymerization: N1 = 2122 and N2 = 5341. The solid line
is a fit to the experimental data using equation (1), with the lower cut-off for capillary wavevectors
qmin defined by the dispersion length adisp and the neutron coherent length λcoh. See the text for
details.

In figure 10 the interfacial roughness is plotted as a function of the bottom polymer layer
thickness for two cases with both χ ∼ 0.0033, while the degrees of polymerization were
N = 2122 and 5341. The total interfacial width 2w found for these systems in the absence of
confinement, when both the polymer layers are thick, was ∼117 Å.

As can be observed in figure 10, at higher values of interaction parameter the effect
of confinement is stronger for polymer pairs with lower degree of polymerization, and the
interface for thinner films is in this case narrower. However, for lower values of the interaction
parameter, and thus broader interfaces, the dependence of the interfacial width on the thickness
becomes similar and the effect due to a confined geometry is not strongly dependent on the
molecular weight of the polymers, as shown in figure 11.

To determine the relative importance of dispersion forces in modifying the spectrum of
capillary waves, we tried to fit our data to equation (48), using as the lower cut-off q2

min the sum
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Figure 11. Interface roughness as a function of the bottom layer thickness for polymer pairs with
similar equilibrium interfacial widths: χ = 0.0014, N = 4520 and χ N = 6.2 (circles) and
χ = 0.0018, N = 10 246 and χ N = 17.9 (triangles).

(2π/λcoh)
2 +(2π/adisp)

2, where λcoh is the coherent length in a neutron reflectivity experiment.
The experimental data with N = 5341 were well approximated by the theoretical prediction of
a logarithmic dependence on the film thickness characteristic of long ranged forces, while the
polymer pairs with lower molecular weight show a stronger dependence on the thickness.

The best fit, displayed in the figure, is obtained for a value of the Hamaker constant of
8 × 10−20 J, λcoh ∼ 29 μm (similar to the value used in our previous study [5, 42, 43]), �0 =
(30 ± 5) Å and γ = (0.46 ± 0.15) mJ m−2, while the values predicted by the self-consistent
field theory in the strong segregation limit are �0SSL = 34 Å and γSSL = 0.92 mJ m−2.

As found in previous experiments, �0 is in good agreement with the theoretical prediction,
while the interfacial tension obtained experimentally is approximately 40–50% lower then the
theoretical one.

For lower values of the interaction parameter, and thus broader interfaces, a different
behaviour is observed. The dependence of the interfacial width on the thickness for polymer
pairs with different molecular weights becomes similar and the effect due to a confined
geometry is not strongly dependent on the molecular weight of the polymers. This is shown
in figure 12 where the dependence of roughness on the thickness is displayed for systems with
χ ∼ 0.0016, and degrees of polymerization N = 4520 and 10 246. For both the systems a
value of total interfacial roughness 2w of approximately 170 Å was found.

As can be observed in the figure, in this case the two series of samples present a similar
dependence on film thickness. To make a more quantitative analysis we fit our data to
equation (48). Due to the broader interface we are now in the regime where short ranged
forces are more important and the lower cut-off q2

min is given by (2π/λcoh)
2 + (2π/ξ)2.

From the fits, displayed in figure 12 as continuous lines, the following values were found
for the different parameters. For both the molecular weights the interfacial tension was
γ = (0.16 ± 0.05) mJ m−2 and the value obtained for �0 was (43 ± 5) Å. Similar values
were also found for the transverse decay length k, k1 = (100 ± 10) Å for N1 = 4520 and
k2 = (95±10) Å for N2 = 10 246, of the order of the semi interfacial width w of ∼85 Å, while
the bulk correlation lengths were respectively ξB = (95 ± 9) Å (calculated value ξB = 102 Å)
and ξB = (162 ± 12) Å (ξB = 172 Å). At lower values of thickness the fits can be improved
if a reduced intrinsic interfacial width is considered (equation (49)). The fits obtained in this
case are displayed in the figures as dashed–dot lines: the values found for C are respectively
(17 ± 8) for the lower molecular weight, and (8 ± 3) for N = 10 246, of the same order as the
value 16 predicted theoretically in the weak segregation limit [50].

29



J. Phys.: Condens. Matter 19 (2007) 073102 Topical Review

2000 4000 6000

 N=10246

 short-ranged forces

 reduced width

 N=4520

 short-ranged forces

 reduced width

45

60

75

45

60

75

thickness (Å)

In
te

rf
ac

e 
ro

ug
hn

es
s 

(Å
)

Figure 12. Interface roughness as a function of the bottom layer thickness for polymer pairs with
χ ∼ 0.0016 for two different values of degree of polymerization: N1 = 4520 (top figure) and
N2 = 10 246 (bottom figure). The solid lines are fits obtained using equation (1), where the lower
cut-off q2

min depends on the neutron coherent length λcoh and on the lateral correlation length ξ

introduced by the presence of a short ranged field. The dashed–dot lines are obtained considering
also a reduced intrinsic width. See text for details.

The different influence of the chain lengths on the thickness dependence of the interfacial
width could be explained considering that polymers with higher molecular weights have a larger
bulk correlation length ξB. Thus for higher values of χ the short ranged interactions between
the surface and the interface will introduce a lateral correlation length ξ that is larger than the
dispersive capillary length adisp due to the presence of van der Waals forces. As a result, the
cut-off for long wavelength capillary waves is provided by adisp, and the dependence of the
interfacial roughness on film thickness for polymer with longer chains is weaker. For polymer
pairs with lower interaction parameter short range forces become dominant, and the cut-off for
smaller wavevector is determined by the lateral correlation length ξ . Thus the interfacial width
increases with the square root of the thickness, and the effect of a higher molecular weight is
less important.

As an example, we can consider the case of the polymer pairs with χ = 0.0033
(N1 = 2122 and N2 = 5341). We estimated the bulk correlation length, ξB, considering a
statistical segment length a of 6 Å [11]. For the first polymer pair we obtained ξB = 65 Å,
while a bulk correlation length of 104 Å was found for the polymer pair with higher N . If
a bottom layer of thickness 800 Å is considered, using for k−1 a value of 68 Å of the order
of the measured semi-interfacial width w of (61 ± 5) Å, the values obtained for the lateral
correlation length ξ are ∼2 μm for the polymer pair with N = 2122, and ∼4 μm for that with
N = 5431. The dispersive length adis, estimated from the fit of the experimental data with
the lower molecular weight, is ∼2 μm. Thus, the dependence of the interfacial width on film
thickness for systems with longer chains is determined by long ranged forces since ξ is higher
than adis. On the other hand, for systems with N = 2122, the values of ξ and adis are closer
and the thickness dependence is given by a combination of long and short ranged forces.

13. Conclusions

Our experiments have clarified important fundamental issues relating to the structure of the
interface of very thin polymer films. The experimental effort was focused on a class of polymers
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ideally suited for interfacial studies, random copolymers of polyolefins. These systems offer
the possibility to tune the interaction parameter of the polymer pair, and thus to control the
conditions of miscibility.

For all the systems studied, the experimental results showed that as the miscibility is
increased the interface becomes broader. However, two different regimes were found for the
dependence of the interfacial width on the distance away from the critical point. For strongly
immiscible polymer pairs, the width of the interface increases slowly when the degree of
immiscibility is decreased. The interfacial width varies in this case only with the interaction
parameter χ , and it is independent of the degree of polymerization N of the polymers. Closer to
the critical point the dependence on the degree of miscibility becomes stronger and the way in
which the interfacial width diverges, as criticality is approached, is related to the chain length
and χ . Our experiments found that the self-consistent field theory numerical calculations,
with the additional contribution due to capillary waves, provides a good description of the
width of the interface between two polymer bulk phases, in particular at intermediate values
of χ . The experimental values of interfacial width were also compared with the analytical
expressions derived from mean field theories in the strong and weak segregation limits. At high
degrees of immiscibility, the SCF theory, in the strong segregation limit, predicts a narrower
interfacial region than the one found in the experiments. Agreement might be obtained if a
lower interfacial tension, and thus a higher contribution of capillary waves to the measured
width, is considered. For lower χ N the interfacial width starts to diverge and there is a
crossover to a region of miscibility where the square gradient theory, in the weak segregation
limit, better approximates the experimental data.

The thickness dependence of the interfacial width has been studied for different degrees
of miscibility, to investigate the effect of confinement on interfacial fluctuations approaching
criticality. The results show a gradual transition from a region where long ranged dispersion
forces are dominant in influencing the capillary wave spectrum, for higher degrees of
immiscibility, to a region where short ranged forces become more important and the
dependence of the interfacial width on film thickness is stronger. These results offer an
explanation for the contrasting experimental results present in the literature on the thickness
dependence of interfacial widths between coexisting polymer phases in a confined geometry,
where a square root dependence on the thickness was observed for a polymer pair rather close
to the critical point, and a logarithmic dependence on the thickness was instead found for
more immiscible polymers. To investigate the effects of a confined geometry on polymers with
different chain lengths as criticality is approached, the thickness dependence of the interfacial
width for systems with different molecular weights was also studied.

Our results show that far from the critical point, contrary to what has been observed in the
absence of confinement, where the interfacial width is independent of the molecular weights
of the polymers, the length of the polymer chains has an important role in the determination
of the dependence on film thickness. At higher values of the interaction parameter, polymer
pairs with a higher degree of polymerization presented, in fact, a wider interface for the same
thickness of the bottom film. This can be explained considering that polymers with higher
molecular weights have a larger lateral correlation length ξ . Thus van der Waals forces will
dominate over short ranged interactions over a wider range of miscibility, and the dependence
of the interfacial roughness on film thickness for polymer with longer chains is weaker with
respect to lower molecular weight polymers. For smaller χ , and thus broader interfaces, the
short ranged interaction between the interface and the other film boundary becomes dominant.
As a result the effect due to the finite size is not strongly dependent on the molecular weight
and the observed dependence of the interfacial width on the thickness for systems with different
degrees of polymerization is similar.
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Appendix

The numerical calculations of self-consistent field theory for incompressible binary polymer
blends have been performed as indicated by references [24, 25, 23, 22] (we thank F Schmid for
providing the calculations).

In these calculations polymer chains are described by continuous curves R(s), where the
variable s defines the position along the polymer chain and varies in the range between zero and
unity. For an AB blend the effect of the interaction with the other polymer chains is described
by the inhomogeneous external potentials UA and UB, defined as

UA(r) = χϕB(r) + ς(ϕA(r) + ϕB(r) − 1) (A.1a)

UB(r) = χϕA(r) + ς(ϕA(r) + ϕB(r) − 1) (A.1b)

where r defines the position in the space, ϕA(r) and ϕB(r) are the volume fraction profiles, χ

is the Flory–Huggins interaction parameter and ζ is an inverse compressibility. In the case of
incompressible polymer blends the limit ς → ∞ is considered.

The distribution function of a polymer chain qα(r, s) (where α = A or B) is given by

qα(r, s) =
∫

D{R(s)} exp

[
− 1

6R2
g

∫ s

0
ds′

∣∣∣∣dR (s′)
ds′

∣∣∣∣
2

− N
∫ s

0
ds′ Uα(R(s ′))

]
(A.2)

where Rg is the radius of gyration of the polymers, N is the degree of polymerization and
the integral

∫
D{R(s)} considers all the possible configurations for the polymer chain. For

simplicity in the numerical calculations the rescaled space unit r ′ = r/wSSL, where wSSL is the
intrinsic interfacial width in the strong segregation limit as defined in equation (10), is used.
In the case of a planar interface, where only the z ′ component is important, qα(z ′, s) obeys the
following diffusion equation:

1

χ N

∂qA(z ′, s)

∂s
= ∇2qA(z ′, s) − χUA(z ′)qA(z ′, s). (A.3)

The volume fractions ϕα(z ′) is then related to the distribution function by the following
equation:

ϕα(z ′) =
∫ s

0
ds qα(z

′, s)qα(z ′, 1 − s). (A.4)

Together, equations (A.1), (A.3) and (A.4) form a system of self-consistent equations, which
can be solved iteratively until self-consistency is achieved. In the calculations the position of
the interface is defined at z ′ = 0 and the following boundary conditions are imposed: at large
distance from the interface ϕα assumes the bulk value ϕα,b and ϕA(z ′) = ϕB(−z′). To solve
the self-consistent problem a mixing scheme is used. Starting in the nth step from an initial
guessed potential U (n)

α (r ′), a new potential U (n,new)
α (r ′) is obtained by using equations (A.3)

and (A.4). The n + 1 guess for Uα is then determined by mixing U (n)
α (r ′) and U (n,new)

α (r ′) in
the following way:

U (n+1)
α (r ′) = U (n)

α (r ′)(1 − λn) + −λnU (n,new)
α (r ′) (A.5)
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The mixing parameter λn is given by

λn = min

⎛
⎝0.1,

√√√√
∑

α

∫
dr ′ (U (n)

α − U (n−1)
α )2

∑
α

∫
dr ′ (U (n,new)

α − U (n−1,new)
α − U (n)

α + U (n−1)
α )2

⎞
⎠ . (A.6)

After solving the SCF equations, the intrinsic width of the interface w and the interfacial tension
γ are obtained from the volume fraction profiles with the following expressions:

w =
∫

dz
(

d(ϕA(z)−ϕB(z))
dz

)
z2

∫
dz

(
d(ϕA(z)−ϕB(z))

dz

) (A.7)

and

γ = γSSL

∫ +∞

−∞
dz′

(
(ϕAϕB − ϕA,bϕB,b) + ς

2χ
[(ϕA + ϕB)2 − (ϕA,b + ϕB,b)

2]
)

(A.8)

where γSSL is the interfacial tension in the strong segregation limit.
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